Problem 2.

(1) Decide, whether a set [z,y,2] € R® which satisfies
eV +tayz=e+1 (1)

can be described on some neighborhood of point [1,1, 1] as a graph of a function z = z(y, 2) :
R? — R of class C*°, which is defined on some neighborhood of [1,1] satisfying 2(1,1) = 1.

(2) Similarly as in (1) decide, whether the set can be described as a graph of C* function y = y(z, 2),
which is defined on some neighborhood of [1, 1] satisfying y(1,1) = 1.
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(3) Compute 55 and 5 5.

(4) Determine a tangent plane to the graph of function y at point [1,1, 1].
If you use the implicit function theorem, then verify its conditions.

Solution

(1) We are going to verify conditions of the implicit function theorem for equation
F(x,y,z)=e"Y+ayz—e—1=0
and point [1,1,1].

— Clearly, F € C®(R3),
— F(1,1,1) =0,
- 91,1, 1) =e+1£0.

Thus z(y, z) exists and belongs to C*°.

(2) Similarly, like in (1). The only additional condition that needs to be verified is: %—5(1, 1,1) =
e+ 1+#0. Thus y(z, z) exists and belongs to C*.

(3) Since x € C2, we have ;jamy = 88y2§z' Similarly, the derivative does not change, if we switch order
of partial differentiation, when we compute second partial derivatives of function F. Using

chain rule we obtain
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We compute
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Thus 8 6 < (1,1) = e+1
(4) Formula for a tangent plane to the graph of function y at point [1,1,1] (T(x,z) = y) is same
like formula for a tangent plane to the graph of function = at point [1,1, 1]:
OF OF OF
—(1, L, )(z-1)+—(1,1,)(y—-1)+ —(1,1,1)(2—1) =0.
5o (LD = 1)+ Fo(L 1L = )+ G011 = 1) =0
Thus 1
T(x,z)=—x+2— :



